

Predictive microbiology

Annie Beaufort

EU RL for Listeria monocytogenes

What is predictive microbiology?

The microbial responses to the food environments by mathematical models.

It is often use to assess the growth, the survival and the destruction of bacteria in foods.

Main software

Software	Admin Center	Applications	Growth	Survaival	Heat destruction	Food application	Commercial software
Food MicroModel	MAFF (Agricult. Minist. UK)	1st commercial software, Simulation in synthetic media (lab. broth) Food is not taken into account, This software was stopped	x	x	x		x
PMP	USDA	Simulation in synthetic media (broth), Food is not taken into account	x	x	x		
ComBase Predictor	IFR	Simulation in synthetic media (broth), Food could be taken into account by commercial IFR expertise.	x	x	x		
Seafood Spoilage and Safety Predictor	DIFRES	Specific software for sea food products, Growth simulation for pathogen and spoilage bacteria Sea food products are taken into account	x			x	
Sym'Previus	GIS Sym'Previus	Based on food and microbial parameters, All simulations takes food product into account	x	x	x	x	x

Predictive microbiology is based on primary models and secondary models

≻A primary model describes the evolution of microbial population according to the time in a given environment.

>A secondary model expresses the evolution of parameters according to environmental factors: they link λ and μ_{max} to environmental factors (temperature, pH, ...).

Primary models

$$\begin{array}{ll} \text{Gompertz} & \ln(N(t)) = \ln(N_0) + A \exp\left(-\exp\left(\frac{\mu e}{A}(lag-t) + 1\right)\right) \\ \text{logistique} & \ln(N(t)) = \ln(N_0) + \frac{A}{1 + \exp\left(\frac{4\mu}{A}(lag-t) + 2\right)} \end{array}$$

Secondary model

$$\mu_{\max} = \mu_{opt} \gamma_{pH} \qquad \gamma(pH) = \frac{\left(pH - pH_{\min}\right)\left(pH - pH_{\max}\right)}{\left(pH - pH_{\min}\right)\left(pH - pH_{\max}\right) - \left(pH - pH_{opt}\right)^{2}}$$

Combase software

4 applications

***** Combase: the data base

***** Combase predictor

***** Combase: Perfringens predictor

***** Combase: growth interface

First application

ComBase: access on database

ComBase is a two-part system including a database and predictive models. In this first part, we will work on the database.

Click on Access the ComBase Browser

You will be directed to the data base by criteria.

Search static data by criteria

Assuming that you are interested in the growth of *Salvonella* in **poultry** at **refrigeration temperature**, select the following

Example of search

Click '+' to expand choice and choose Poultry.

Example of search

In the "Organism" group, select Salmonella spp;

Choose Salmonella sp;'

Example of search

Then, click on the search button, and you get the records found.

Result of search

COMBASE SEARCH RESULT SUMMARY

Please exclude any records not of interest by clicking on the appropriate checkbox. You may need to page through the results by clicking on the page numbers at the end of the list. Clicking on a heading will sort by that column. Clicking again will sort in reverse order.

Record Count: 122/122 Download to CSV (Save Changes First)

List of Current Matches

Page: 12											
<u>Organism</u>	Food Type	in_on	<u>Temp</u>	<u>рН</u>	<u>water</u> <u>activity</u>	<u>conditions</u>	Source	<u>Key</u>	Exclude		
salmonella spp	Poultry	In: chicken breast	4	6.3		raw, lactic_acid(ppm): 20000	Anang_07	Anang_10_10S			
salmonella spp	Poultry	In: chicken breast	4	6.3		raw, lauricidin(ppm): 0	Anang_07	Anang_10_15			
salmonella spp	Foultry	In: chicken breast	4	6.3		raw, lauricidin(ppm): 5000	Anang_07	Anang_10_2S			
salmonella spp	Poultry	In: chicken breast	4	6.3		raw, lauricidin(ppm): 10000	Anang_07	Anang_10_3S			
salmonella spp	Poultry	In: chicken breast	4	6.3		raw, lauricidin(ppm): 15000	Anang_07	Anang_10_45			
salmonell: spp	Poultry	In: chicken breast	4	6.3		raw, lauricidin(ppm): 20000	Anang_07	Anang_10_50			
salmonela	Poultry	In: chicken breast	4	6.3		raw, lactic acid(ppm): 0	Anang 07	mang 10 6S			

Then, choose a record you are interested in.

at the

View Details

Save Changes

Exclude All

Here is the record you are interested in

You can estimate the μ_{max} (growth rate): click on « Fit the data ».

A fitting tool (primary model)

You get :

- the experimental data
- the fitted growth curve

- the μ_{max}

Second application

Models

(temp, pH, aw,CO_2) (temp, pH, aw) (temp, pH, aw, CO_2) (temp, pH, aw, NaNO_2) (temp, pH, aw, Lactic) (temp, pH, aw, acetic acid)

(temp, pH, aw) (pH,aw) (temp, pH, aw) (temp, pH, aw, CO_2) (temp, pH, aw, NaNO_2)

(temp, pH, aw) (temp, pH, aw, CO_2)

(temp, pH, lact)

(temp, pH, acet)

(temp, pH, aw)

(temp, pH)

(temp,pH)

Organism

Aeromonas hydrophila
Bacillus cereus
Bacillus cereus + CO_2
Bacillus licheniformis
Bacillus subtilis
Brochothrix thermosphacta
Clostridium botulinum (non.prot)
Clostridium botulinum (prot)
Clostridium perfringens
Escheria coli 0157
Escheria coli 0157 + CO_2
Listeria monocytogenes
Listeria monocytogenes + CO_2
Listeria monocytogenes + Nitrite
Listeria monocytogenes + Lactic
Listeria monocytogenes + Acetic
Staphylococcus aureas
Saccharomyces cerevisiae
Salmonellae
Salmonellae + CO_2
Salmonellae + Nitrite
Yersinia enterocolitica
Yersinia enterocolitica + CO_2

Yersinia enterocolitica + Lactic Yersinia enterocolitica + Acetic Bacillus subtilis (aw: with glycerol) Pseudomonads Brochothrix thermosphacta death

env.factorsRemarks(temp, pH, aw)(temp, pH, aw)(temp, pH, aw, CO_2)(temp, pH, aw)(temp, pH, aw)

NaCl=0.5 const NaCl=0.5 const

NaCl=0.5 const

FLAIR. NaCl had no effect between 0 and 2 %.

Access to ComBase Predictor

You are here: Home > Predictive Models

Predictive Models

The **ComBase Predictive models** are a collection of software tools based on ComBase data to predict the growth or inactivation of microrganisms. Currently available predictive tools include the following on line applications:

ComBase Predictor a set of 23 growth models and 6 thermal death models for predicting the response of many important foodborne pathogenic and spoilage microorganisms to key environmental factors. An Excel version of this web application can also be found in the *ComBase Excel Demo* downloadable <u>here</u>

Perfringens Predictor, an application specically designed for predicting the growth of Clostridium perfringens during the cooling of meats. An Excel AddIn version of the program can also be found in the Downloads section of this web site

Predictive Models

🖶 🖃

PREDICTIVE MODELS COMBASE PREDICTOR PERINGENS PREDICTOR

Search on the web site

afi&e

Search...

Languages

<u>English</u> Español 日本語

To access these programs you must first register and then provide your username and password with each login

Access to ComBase Predictor

Growth Predictor

ComBase Predictor

Third application

ComBase: Clostridium perfringens

Access to Perfringens Predictor

You are here: Home > Predictive Models

Predictive Models

The **ComBase Predictive models** are a collection of software tools based on ComBase data to predict the growth or inactivation of microrganisms. Currently available predictive tools include the following on line applications:

<u>ComBase Predictor</u>, a set of 23 growth models and 6 thermal death models for predicting the response of many important foodborne pathogenic and spoilage microorganisms to key environmental factors. An Excel version of this web application can also be found in the *ComBase Excel Demo* downloadable <u>here</u>

Perfringens Predict, an application specically designed for predicting the growth of *Clostridium perfringens* during the cooling of meats. An <u>Excel AddIn version</u> of the program can also be found in the Downloads section of this web site

Predictive Models

🖶 🖃

PREDICTIVE MODELS COMBASE PREDICTOR PERINGENS PREDICTOR

Search on the web site

Search...

Languages

<u>English</u> <u>Español</u> 日本語

To access these programs you must first register and then provide your username and password with each login

Access to Perfringens Predictor

PerfringensPredictor

Perfringens Predictor

By clicking on the "Accept" button, you agree with the following: All rights of ownership in Copyright and other Intellectual Property Rights in Perfringens Predictor and the program documentation shall at all times remain vested in the Food Standards Agency and the Institute of Food Research and no such rights have been or will be transferred to you. The Food Standards Agency and Institute of Food Research have taken due care in the design of the models, their validation and implementation in the software. However, you acknowledge that your use or application of Perfringens Predictor is beyond the control

aA3es 🕻

ACCEPT 🔫

EXIT

-

Use of Perfringens Predictor from Excel file

💌 м	🛛 Microsoft Excel - demo.xls															
8	<u>Eile E</u> dit	⊻iew <u>I</u> nser	t F <u>o</u> rmat	<u>T</u> ools <u>D</u>	ata <u>W</u> indow	, <u>H</u> elp <u>P</u>	erfringens Pre	edictor					l'ype a questio	n for help		×
D	😂 🖬 🔒	8 5 6	A 185 X	B C •	ø	a - 🞑	$\Sigma - \frac{1}{2} \downarrow \frac{2}{4}$	1 101 1	100% -	2.						off
1	🔓 📩 🌌 🖙 🌆 🖓 🖏 😥 💱 Reply with Changes End Review															
Orial																
Alla																
	A	B	C	D	E	F	G	Н	T T	J	K		M	N	0 -	
1			-	_			DATA PRO	OFILE			1				-	
2		54.4>7.2 0) in 15 h			[54.4>6.2	C in 12 h				54.4>7.2	C in 12h			
3																
4		0	54.4	_		-	0	54.4			1		54.4			
5		1	46.4	Pref	ringens Pr	edictor Ad	ld tempera	ture profi	le			× 1	44.6			R
5		2	39.6 33.0									2 3	30.0			
8		4	29.1		Select a t	emperature	e profile in th	ne current	Excel Work	:Book.		4	25		-	
9		5	25		Highlight	ne data or	ny (without	neadings).				5	20.8			
10		6	19.6		Data must	: be organi:	zed in colum	ns:				6	17.4			1
11		7	18.7		Time (in h	iours) must ure record:	t be in the fi t data (in Ce	rst column Isius dooroe	of the sele sc) must be	tion. In the		7	14.7			
12		8	16.2		second co	olumn of th	e selection.	isius acgree	ssy mast be			8	12.5			
13		9	14.2		The table	حقم أحار بحجام	ut mitle a vara	evel at 0 lae				9	10.7			<u> </u>
14		10	12.5		The table	should sta	ri wiin a rec	uru at u rit	iurs.			10	8.1			
16		12	9.8		Press OK 1	when selec	ted.					12	7.2			
17		13	8.8													
18		14	7.8	[ſ		1			-						
19		15	7.2	-		OK				Cancel						
20							F -		T	Ŧ	T	_				
21							9	7.8		-			s		3?	
22		0			0		10	/.z		-						
23							12	6.7				- 1				
25							12	.0.2		-	1					
26																
27								5	8							
28															-	
29									1		-	_				-
14 4	► ► \ IFF	R test data /	/					ð:	1	•					•	1 2
Draw	- 🗟 🗛	utoShapes 🔹 🔨		○ 🛯 4	1 3: 😰 🗖	3 🧆 - 🚬	<u>/</u> - <u>A</u> - =		• 🖌 -							

Use of Perfringens Predictor

Fourth application

The 2D interpolation region (Temp, pH) becomes smaller as salt concentration increases.

Sym'Previus : System for prediction of microbial behaviour in foods

Système de prévision du comportement des microorganismes dans les aliments

Partners involved

- Public research laboratories

- Technical centers ACTIA

- Industrials

- Public powers

Tools package includes:

*****Database

&Growth / no growth boundary simulations

Probabilistic simulations

*****Heat destruction simulations

Sym'Previus :

2 applications

Sym'Previus : growth interface

Sym'Previus : probabilistic module

First application

Sym'Previus shows "growth bounderies" according to 2 factors

L. monocytogenes $T = 8^{\circ} C$

Sym'Previus : probabilistic module

Probabilistic software

• Growth simulation of a bacteria in a food taking into account variabilities related to :

- strains
- food
- initial contaminations.

The software can include challenge-tests data to take into account the food matrix (determination of the μ_{opt} parameter).

How to use the probabilistic software?

añses 📢

afiles 🗘

Microorganism		Food	Cont	amination	Simulation	Results				
<u>Step 3</u> : It is often difficult to evaluate the initial food contamination, because analyses can be affected by sampling, low prevalence, variability, etc However, this contamination is very important to evaluate the risk during storage. For instance, lag time could be affected by low contamination. This third step allows the estimating of contamination level of your product, based on your own data. If we suppose a gaussian distribution of this initial contamination, law's parameters will be calculated from your input.										
3 options can	be s	elected :								
	Cont	amination (in log/g)	Mean							
	Cont	animation (in log/y)	Standard de	eviation						
			Number of a	analysed samples	1000					
•	Auto	utocontrol data	Number of p	ositive samples	50					
			Weight of analysed sample (in							
	Auto	control data (hactorial	Unit : 🛛 🔍	in CFU/g						
	cour	nt)	Unit : 🔍 🗩							
	How	to fill in these data								
		Cancel	Validate							

Microorganism	Food	Contamination	Simulation	Results
, <u>Step 4</u> :				

Simulation step allows you to choose new environmental conditions (formulation, static or dynamic storage) in which you wish to evaluate microbial growth, and general mormation such as product shelf-life, its weight or the maximal contamination not to reach at the end of shelf life.

•	Max contamination level (not to reach at the end of shelf life, in log CFU/g)							
•	Shelf life (in days)		7					
		Mean	120					
•	weight of final product (in gram)	Standard deviation	10					

Impose a lag time equal to O : 🛛 📃

afises 🍾 🥜

Result of one example

Growth simulation of Listeria monocytogenes in Food

Probability than a food unit is contaminated is 95%. For these contaminated units, growth simulations are presented below :

Sim	ulated paramete							
	Median	Ph	Physico-chemical factors					
Growth rate (/h)	0.0641	0.042 / 0.09	Factors	Value	Standard deviation			
Generation time (h)	10.8	7.71 / 16.6	Temperature	8	1			
Lag time (h)	41	25.5 / 74.5	рН		0			
Initial population (log)	-1.16	-2.08 / -0.00435	aw	0.991	0			
Maximal population (log)) 5.83	5.75 / 5.9						

affses 📿

Conclusion related to probalistic approach

Sym'Previus allows to estimate the shelf life taking into account

- industrial microbiological counts
- physical chemical variability measured.

Food safety laboratory Maisons-Alfort, France

